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ACOUSTIC WAVE SCATTERING FROM A CIRCULAR CRACK: COMPARISON OF DIFFERENT

COMPUTATIONAL METHODS

William M. Visscher

Theoretical Division, MS B262
Los Alamos National Laboratory
Los Alamos, NM 87545

INTRODUCTION

This work was motivated by a disagreement between the results ob-
tained from two computations of scattering of an axially incident elastic
p-wave on a circular crack. One calculation, using the method of Mal [1],
iovolving the direct solution of the Helmholtz integral equation for this
case, shows the total,cross-section oscillating with a considerable ampli-
tude about © ¢ = 2na” as a function of kRa with period mn, where k¥ =
2n/ is thetﬂayleigh surface wavenumber. Another calculation, [2] using
MOOT, in which the elastic displacement near the crack is expanded in
regul ar spherical eigenfunctions of the elastic wave equation, agrees with
the first calculation reasonably well up to kRa = 10 or so, but thereafter
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the oscillations in O rapidly disappear. Figure 1 contrasts the
. tot
different results.

We thought that perhaps the reason for this discrepancy was that the
basis for the MOOT expansion (j_(kr) and its derivatives) was inappro-
priate; in fact, we mistakenly Stated that it is pot cormplete on 0 < kr < ka
(it is complete; see 9.1.86 in ref. [3]), and that the difference might be
ameliorated by a different choice of basis.

A simple system on which to test this speculation is the scalar wave
incident on a circular crack. The wave function ¢ satisfies

> +x¥)e=0 | | (1)

asymptotic scattering conditions, and certain boundary conditions (BC's)
on the crack surface C. The crack is shown on Fig. 2; it is a mathematical
crack (zero thickness) in the xy plane with radius a.

The simplest BCs to impose on ¢ would be Dirichlet (¢ = 0 on C) or
Neumann (¢, = 0 or C, where ¢, = V¢-n). The scattering can be obtained
for these clses by a variety of methods. The T-matrix of Waterman has been
obtained for both Dirichlet and Nuemann BCs [4]. The Helmholtz integral
equation has been solved for Dirichlet BCs and axial incidence [5]), and
MOOT has been applied to this case, with two different choices for the basis
set [5].

Unfortunately, though, all these methods give results (for the
Dirichlet case; not all have been worked out for Neumann BCs) which agree
with one another; in particular, for large ka no oscillations appear in the
scattered amplitude. This is a reflection of the fact that for large Kka
and DiEic let BCs ¢’n on C approaches a constant (independent of

p = Jx“+y*) [5].

In contrast, the elastic wave case illustrated in Fig. 1 has oscil-
lations in the scattered amplitude caused by resonance modes (drumhead
vibrations) which sre standing surface waves on the crack surface (this
is why the oscillations in Fig. 1 have roughly period n in kRa).

The reason for this difference is that the Helmholtz equation (1)
admits no surface wave solutions with either Dirichlet or Neumann BCs, and
without surface waves one can't get standing waves on C and one won't get
resonance oscillations in the scattered amplitude. Our model is just too
simple to exhibit the effect we wish to study.

A solution to this problem is to change the BCs to mixed boundcry
conditions (MBCs)

¢ + y@,n =0 onC |, (2)
which admits, with (1), a solution

0(x,y,z) = e XPY2 (3)

with K2 = k2 + yz. Equation (3) describes a surface wave if the surface
is 2z =0, y > 0, and the incompressible fluid occupies the upper half-
space. If we solve the crack problem with the BCs (2), one expects to see
resonances corresponding to standing surface waves on the crack surface.



The MBCs however, complicate the mechanics of solving the scattering
problem considerably. The T-matrix method can no longer be applied, because
a feature of the method which is essential to its application to cracks,
the symmetry of the Q-matrix, no longer holds (or at least has not been
demonstrated).

The Helmholtz integral equation method, too, becomes much more
difficult. The Helmholtz integral equation is

¢(r) = o,(r) - J {G(r,r')¢,n.(r') - G(r,r').n.¢(r')]d5' , (4
C

for r outside the crgg% C, with G(r,r') = eikR/AHR, R = I;—;'I. For axial
incidence, ¢ .(r) = ¢, and in order to solve (4) for ¢(r), r on S, one
considers ¢ ?r). and ¢_(r), which are ¢(p,+0) and ¢(p,-0) respectively.

It can be sﬁown that

Glr,r'), = - sx%zt.pi_l 8(p-p")

for z, 2' small, sc that (4), with (2), yields

) =1+ ¥y f Gp,p)bpdS )
C+

with ¢ = %(¢++¢_) and C+ = top surface of crack. Equation (5) can be
solved for ¢(2), which, when inserted in (4), will give the even (in z)

part of ¢(r).

In order to obtain an equation for § = l(¢ -¢_), which, when plugged
into (4) will give the odd part of ¢(r), one“needs to differentiate (4)
with respect to z before letting z » *0. This yields

-y'lé(p) = ik - f G.zz(p.p')é(p')ds' ) (6)
C+
with
2
_dG
G'zz -2 M
dz ve
z=z2'=0

Equation (6) is a much nastier one than (5), because (1) has a |3'6'|"3
singularity. Although it turns out that this is no problem in principle
(the singularity is integrable, and one can replace the surface integral
with a "principal value' integral by omitting a small circle around

Pp' = p), it is a serious one in practice because it drastically worsens
the convergence of the Fourier integrals with which it is natural to
represent (7).

This leaves us only MOOT with which to compute acoustic sattering
from a crack with MBCs.

Moot

We will now briefly sketch the method of optimal truncation (MOOT),
as applied to circular flat crachs. It will be clear that it is applicable
to calculation of a scattering from any isolated flaw.



The idea is to expand ¢ in truncated sets of eigenfunctions of the
Helmholtz operator (1) independently in each of the regions I, II, and I1I
shown on Fig. 2. Then integrate the square of the residual (the amount by

which the BCs or matching conditions fail) on the surfeces Si and CI' Thus
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where ¢I(r) = 2 an¢n(r), ¢11(r) = 2 bn¢n(r) .
n=1 n=1
mAX .
and ¢, (r) = 3 clbél)(r)Yg(cosB), o, (r) = e'*
2=0

Fig. 2. The circular crack on the xy 111

plane. S, are the upper and lower
hemispheres surrounding C,, the top
and bottom surfaces of theé circular
crack.

B is a dimensionless constant we take to be min(],(ka)-z). Varying it by
an order of magnitude either way has little effect on results. Clearly
I1 >0, with equality attained if and ooly if ¢1, ¢II’ ¢III couprise an

exact solution of the scattering problem with ¢, incident. The functions
¢n(r) are any convenient set of solutions of ( +k2)on = 0; they need not

be mutually orthogonal. The truncation limits N, M, £ ax 2T¢ mostly
dictated by the value of ka we comsider. Although the78%is in principle
no reasor they can't be different, we will take N = M = ﬂmax +1.
Now I is & bilinear form in a_ = {a_, b_, c_}, which we wish to
C n n' n' n
minimize. Thus

@
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n
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is a set of 3N linear inhomogeneous equations for the 3N unknowns a, b, c,
with coefficients which sre integrals of pairwise products of ¢0’ ¢n' and



Y,(cos8) on C, and S,. The matrix of the coefficients can be readily
inverted (at feast i* N is not too large), and the solution for a
obtained.

So MOOT is unique.y specified except for choosing ¢ , the set of N
independent solutions of (1) with which ¢ in the upper and lower hemisphere
is represented. We will choose two sets, and compare the results. The
first choice will be

o = i (k) Yg(cosﬁ) . (9)

in apalogy with the set used in [2] to compute elastic wave scattering
from the circular crack. The second choice will be

gin qnz
X, © JO(PEP) y (10)
cos q 2
' 2 2 _ .2
where p,e are the roots of J.(x) and of J'(x), and p_ + = k. Most of

the S are imaginary. Botg (9) and (10) comprise compléte sets as N -+ o;
the question we wish to address here is 'which set will closely approximate
the correct answer with the least labor?"

Numerical Considerations

In the case of Dirichlet BCs the solution for k + 0 is for r on C
2
¢, (P) = -2/nja’-p® (11)

and this inverse square root singularity at the crack edge is presumably
preserved for all k. For the mixed BCs (2) the behavior of ¢, and conse-
quently also of ¢ is undoubtedly also singular at p = a, but we don't

know the nature of the singularity. If ¢, for MBC (and consequently also
¢) behaves like (11), then the integrals oh C in I will contain loga-
rithmic divergent terms, presumably caincelling one another. Since we
don't know the nature of the singularity, however, we will proceed as if
there were none, and let the results tell us what it is.

Most of the integrals which are the coefficients of the bilinear form
(8) must be performed numerically, which we do by Gauss-Legendre quadrature
with 50 points (on the interval O < p < a for the C-integrals; on the
interval 0 < cos® < 1 for the S-integrals).

We will show results of calculations for a variety of choices of

2 , up to 24, and for values of ka up to 14. For these values of Emax
5823n the Gauss-Legendre quadrature is more than adequate; whether

ﬂmax = 24 is sufficient for ka = 14 can be judged from the results.
RESULTS

In Fig. 3 is shown the value of Re¢ on the top surface of the crack
as a function of p and £ computed with MOOT using a spherical basis.
The phase of ¢ has been ?agusted here so that it is real in each case at
p=0. This is for ka = 10; ¢ does not approach its true value until
2 > 15. Even for ka = 0 ¢ bhas 3 nodes in " < p < 1, and one always
needs 2 > 15 or so for accurate results.

max -

Figure 4 shows I/], and 4n Im £(0)/ko 0 (the optical theorem ratio)
for this system. I/1. & 0 for an exact solution. It doesn't vanish, but
seems to be decreasing as Emax increases as if the MOOT solution is trying,



with slow success, to accommodate a singularity (Fig. 3 shows a discon-
tinuity) in ¢ at p = 1. The optical theorem ratio should be unity; it is
about 0.98 and increasing at the largest lna

X

Fig. 3. Pressure Re¢ on the
top surface of a circular crack
of unit radius caused by en
axially incident wave with
ka = 10. As £ ax increases, ¢
seems to converge nicely,
except at p = 0. But the
importance of (0) is diminished
by the fact that ¢(p) is always “
weighted with pdp. ¢(2) begins
to resemble its true value at
2 ~ 15. This figure was

max . ; .

cogputed using spherical basis
functions.

Fig. 4. Integrated
residual I/I, (left
ordinate sca?e) and
optical ratio (right
ordinate scele) for the
system described in
Fig. 3. I, is I with -9
only ¢0 # 8.
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The next two figures illustrate the same quantities for the
cylindrical basis set. The results are similar.

Fig. 5. Same as Fig. 3, but
using cylindrical basis
funcctions. This ¢ agrees
with that of Fig. 3 for
large £ . The relatively
more sulden change from
noise to nearly the correct
¢ at £ ~ 15 is caused by
the falf*that at that point
the number of nodes and
antinodes in J.(p p) in

0 <p <1 coinlid®s with the
pumber in the correct ¢(p).




Fig. 6. Same as Fig. 4,
but for cylindrical basis
functions.
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The final series of figures shows how some of the same qQuantities
vary as ka goes from 0.5 to 14 for the circular crack with spherical basis
functions (£ = 24) and with cylindrical basis functions (£ = 23).
The residual gﬁtegtal plots indicate the trustworthiness of tBe*calcula-

tion. Figures (7) and (9) are in close agreement (notice the different
vertical scales).

Fig. 7. Real part of ¢ calcu-
lated by MOOT with spherical
eigenfunctions and ¢ = 24 as

a function of p and gax Standing
waves exist on this crack even
for ka = 0; the oumber of nodes
increases more or less lincarly
with ka.

Fig. 8. Residual inte-

gral and total cross- .J
section for the system
described in Fig. 7.
The cross-section ap- o4
proaches a constant for
ka » 0; for large ka it
seegs to oscillate about
2na”, the short-wave-

length limit. ]
[ 10—0-‘;:, T H H M " )



CONCLUSIONS

Our results indicate that our original speculation, that the discre-
pancy of Fig. 1 was caused by inadequacy of the spherical basis set, was
wrong. In application to the present test problem, in fact, the spherical
basis set works better than the cylindrical one does. Both are quite cap-
able, with the same truncation limit £ = 24, of accurately describing
the pressure (analog of the crack-openggg-displacement in the elastic wave
scattering case) at least up to ka = 14, when the pressure has 5 nodes in

0 <p <a. %
Fig. 9. Same as Fig. 7, but with }k
a set of 23 cyliadrical basis
functions. After a different
vertical scale is taken in to
account, Figs. 7 and 9 are in
close agreement.
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svstem of Fig. 9.
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The original question then returns: if it is not due to a bad basis
set, what does cause the difference between the two results on Fig. 1?7
Discounting the possibility that Mal's method yielded wrong results here,
one is forced to the conclusion that £ was not large enough in the
MOOT calculation reported in [2]. A rgaéh estimate, obtained from the
results of the present scalar MBC problem, of the minimum lmax required
for a given ka » 1, is

Rmax > 1.5ka . (17)
The largest value of k,a shown in Fig. 1 is kRa = 21.4 (k_a = 10); the
criterion (17) indicates that in order to insure accuracy to this value of
ka one should take £ ~ 30. The & used in the MOOT calculation of
[2] was omnly 20. 1t"83y be repeatedm3§th larger £ . to see if this
conjecture is correct. ma
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